Section 6.1 Problems

Problem 1. Use the Gaussian Elimination Algorithm to solve the following linear systems, if possibly, and determine whether row interchanges are necessary:

$$
\begin{cases}x-y+3 z & =2 \\ 3 x-3 y+z & =1 \\ x+y & =3\end{cases}
$$

Problem 2. Given the linear system

$$
\begin{cases}x-y+\alpha z & =-2 \\ -x+2 y-\alpha z & =3 \\ \alpha x+y+z & =2\end{cases}
$$

1. find the values of α for which the system has no solutions.
2. find the values of α for which the system has an infinite number of solutions.
3. assuming a unique solution exists for a given α, find the solution.

Section 6.2 Problems

Problem 3. Find the row interchanges that are required to solve the following linear system using Algorithm 6.1

$$
\begin{cases}x-5 y+z & =7 \\ 10 x+20 z & =6 \\ 5 x-z & =4\end{cases}
$$

Section 6.3 Problems

Problem 4. Is the following matrix nonsingular? If it is compute the inverse:

$$
\left(\begin{array}{ccc}
4 & 2 & 6 \\
3 & 0 & 7 \\
-2 & -1 & -3
\end{array}\right)
$$

Problem 5. Prove the following:

1. if A^{-1} exists, it is unique
2. if A is nonsingular, then $\left(A^{-1}\right)^{-1}=A$
3. If A and B are nonsingular matricies of the same size, then $(A B)^{-1}=B^{-1} A^{-1}$
